Question:

A 2.0-meter long solid rod is free to rotate about one end which has been fixed to a pivot as shown at right. It is raised to an angle of $\theta_{0}=40^{\circ}$ above the horizontal and released. What is its angular speed at the moment its position is horizontal?

Answer:

It is assumed there are no non-conservative forces, so mechanical energy will be conserved during the rotation. We set the initial potential energy equal to the
 final (rotational) kinetic energy.

$$
\begin{equation*}
M g y_{\mathrm{cm}}=\frac{1}{2} I \omega^{2} \tag{1}
\end{equation*}
$$

The center of mass is located at $y_{\mathrm{cm}}=\frac{L}{2} \sin \theta_{0}$ and the moment of inertia of a rod rotating around one end is $I=\frac{1}{3} M L^{2}$. Substituting these into Equation 1 gives

$$
\frac{1}{2} M g L \sin \theta_{0}=\frac{1}{6} M L^{2} \omega^{2}
$$

Solving for angular speed, we have

$$
\omega=\sqrt{\frac{3 g \sin \theta_{0}}{L}} \approx \sqrt{\frac{3\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)(0.643)}{2 \mathrm{~m}}} \approx 3.1 \mathrm{rad} / \mathrm{s}
$$

Numerical solution:

This problem can also be solved dynamically by using Newton's second law in angular coordinates.

$$
\begin{equation*}
\sum \tau=I \alpha \tag{2}
\end{equation*}
$$

Since the weight of the rod can be considered as acting on the center of mass, we can write

$$
\boldsymbol{\tau}=\mathbf{r} \times \mathbf{F}=-\frac{L}{2} \cdot M g \cdot \sin \left(\theta+90^{\circ}\right)=-\frac{1}{2} M g L \cos \theta
$$

Substituting this and the moment of inertia expression into Equation 2 gives (after some simplification)

$$
\frac{\mathrm{d}^{2} \theta}{\mathrm{~d} t^{2}}=-\frac{3 g}{2 L} \cos \theta
$$

This differential equation cannot be solved in terms of elementary functions. However, we can use software to generate a numerical solution, shown below

In particular, we see that the rod reaches a horizontal position at $t \approx 0.48 \mathrm{~s}$ and $\left.\frac{\mathrm{d} \theta}{\mathrm{d} t}\right|_{t=0.48} \approx-3.1 \mathrm{rad} / \mathrm{s}$, which agrees with our previous solution.

Note that the period of the rod's oscillations is considerably larger than the

$$
T=2 \pi \sqrt{\frac{I}{M g L_{\mathrm{cm}}}}=2 \pi \sqrt{\frac{2 L}{3 g}} \approx 2.3 \mathrm{~s}
$$

computed using the small angle approximation. However, it is possible to compute the period accurately in terms of the initial angle using a Taylor series expansion as follows:

$$
T=2 \pi \sqrt{\frac{2 L}{3 g}}\left(1+\frac{1}{16} \theta_{0}^{2}+\frac{11}{3072} \theta_{0}^{4}+\frac{173}{737280} \theta_{0}^{6}+\cdots\right) \approx 3.4 \mathrm{~s}
$$

For more details, see https://en.wikipedia.org/wiki/Pendulum (mathematics).

