Question:

A 2.0-meter long solid rod is free to rotate about one
end which has been fixed to a pivot as shown at right. It
is raised to an angle of 3 = 40° above the horizontal
and released. What is its angular speed at the moment
its position is horizontal?

Answer:

It is assumed there are no non-conservative forces, so
mechanical energy will be conserved during the
rotation. We set the initial potential energy equal to the
final (rotational) kinetic energy.
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The center of mass is located at y., = 5 sin 6o and the moment of inertia of a rod rotating around one
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Solving for angular speed, we have
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Numerical solution:
This problem can also be solved dynamically by using Newton’s second law in angular coordinates.

Y r=1Ia )

Since the weight of the rod can be considered as acting on the center of mass, we can write
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Substituting this and the moment of inertia expression into Equation 2 gives (after some simplification)
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This differential equation cannot be solved in terms of elementary functions. However, we can use
software to generate a numerical solution, shown below

In particular, we see that the rod reaches a horizontal position at t ~ 0.48 s and

5 ~ —3.1rad/s , which agrees with our previous solution.
t=0.48

Note that the period of the rod’s oscillations is considerably larger than the
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computed using the small angle approximation. However, it is possible to compute the period
accurately in terms of the initial angle using a Taylor series expansion as follows:
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For more details, see https://en.wikipedia.org/wiki/Pendulum (mathematics).
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